1,079 research outputs found

    Optimal path planning for nonholonomic robotics systems via parametric optimisation

    Get PDF
    Abstract. Motivated by the path planning problem for robotic systems this paper considers nonholonomic path planning on the Euclidean group of motions SE(n) which describes a rigid bodies path in n-dimensional Euclidean space. The problem is formulated as a constrained optimal kinematic control problem where the cost function to be minimised is a quadratic function of translational and angular velocity inputs. An application of the Maximum Principle of optimal control leads to a set of Hamiltonian vector field that define the necessary conditions for optimality and consequently the optimal velocity history of the trajectory. It is illustrated that the systems are always integrable when n = 2 and in some cases when n = 3. However, if they are not integrable in the most general form of the cost function they can be rendered integrable by considering special cases. This implies that it is possible to reduce the kinematic system to a class of curves defined analytically. If the optimal motions can be expressed analytically in closed form then the path planning problem is reduced to one of parameter optimisation where the parameters are optimised to match prescribed boundary conditions.This reduction procedure is illustrated for a simple wheeled robot with a sliding constraint and a conventional slender underwater vehicle whose velocity in the lateral directions are constrained due to viscous damping

    Chemically modified electrodes: Recommended terminology and definitions (IUPAC Recommendations 1997)

    Get PDF
    Chemically modified electrodes (CMEs) comprise a relatively modern approach to electrode systems that finds utility in (1) a wide spectrum of basic electrochemical investigations, including the relationship of heterogeneous electron transfer and chemical reactivity to electrode surface chemistry, electrostatic phenomena at electrode surfaces, and electron and ionic transport phenomena in polymers, and (2) the design of electrochemical devices and systems for applications in chemical sensing, energy conversion and storage, molecular electronics, electrochromic displays, corrosion protection, and electro-organic syntheses. Compared with other electrode concepts in electrochemistry, the distinguishing feature of a CME is that a generally thin film of a selected chemical is bonded or coated onto the electrode surface to endow the electrode with the chemical, electrochemical, optical, electrical, transport, and other desirable properties of the film in a rational, chemically designed manner. In this report, we have attempted to identify and define the most widely used terminology in the growing field of CMEs and to recommend a particular term in cases where a multiplicity of terms has arisen over the past several years or where previously defined terms have taken on broadened meanings for the special cases of CMEs. It is expected that additional terms will be added to this lexicon in the future as new research directions evolve

    Coexistence of ferro- and antiferromagnetic order in Mn-doped Ni2_2MnGa

    Get PDF
    Ni-Mn-Ga is interesting as a prototype of a magnetic shape-memory alloy showing large magnetic field induced strains. We present here results for the magnetic ordering of Mn-rich Ni-Mn-Ga alloys based on both experiments and theory. Experimental trends for the composition dependence of the magnetization are measured by a vibrating sample magnetometer (VSM) in magnetic fields of up to several tesla and at low temperatures. The saturation magnetization has a maximum near the stoichiometric composition and it decreases with increasing Mn content. This unexpected behaviour is interpreted via first-principles calculations within the density-functional theory. We show that extra Mn atoms are antiferromagnetically aligned to the other moments, which explains the dependence of the magnetization on composition. In addition, the effect of Mn doping on the stabilization of the structural phases and on the magnetic anisotropy energy is demonstrated.Comment: 4 pages, 3 figure

    The complications of ‘hiring a hubby’: gender relations and the commoditisation of home maintenance in New Zealand

    Get PDF
    This paper examines the commoditization of traditionally male domestic tasks through interviews with handymen who own franchises in the company ‘Hire a Hubby’ in New Zealand and homeowners who have paid for home repair tasks to be done. Discussions of the commoditization of traditionally female tasks in the home have revealed the emotional conflicts of paying others to care as well as the exploitative and degrading conditions that often arise when work takes place behind closed doors. By examining the working conditions and relationships involved when traditionally male tasks are paid for, this paper raises important questions about the valuing of reproductive labour and the production of gendered identities. The paper argues that while working conditions and rates of pay for ‘hubbies’ are better than those for people undertaking commoditized forms of traditionally female domestic labour, the negotiation of this work is still complex and implicated in gendered relations and identities. Working on the home was described by interviewees as an expression of care for family and a performance of the ‘right’ way to be a ‘Kiwi bloke’ and a father. Paying others to do this labour can imply a failure in a duty of care and in the performance of masculinity

    Geochemical analysis of bulk marine sediment by Inductively Coupled Plasma–Atomic Emission Spectroscopy on board the JOIDES Resolution

    No full text
    Geochemical analyses on board the JOIDES Resolution have been enhanced with the addition of a Jobin-Yvon Ultrace inductively coupled plasma-atomic emission spectrometer (ICP-AES) as an upgrade from the previous X-ray fluorescence facility. During Leg 199, we sought to both challenge and utilize the capabilities of the ICP-AES in order to provide an extensive bulk-sediment geochemical database during the cruise. These near real-time analyses were then used to help characterize the recovered sedimentary sequences, calculate mass accumulation rates of the different sedimentary components, and assist with cruise and postcruise sampling requests. The general procedures, sample preparation techniques, and basic protocol for ICP-AES analyses on board ship are outlined by Murray et al. (2000) in Ocean Drilling Program Tech Note, 29. We expand on those concepts and offer suggestions for ICP-AES methodology, calibration by standard reference materials, data reduction procedures, and challenges that are specific to the analysis of bulk-sediment samples. During Leg 199, we employed an extensive bulk-sediment analytical program of ~600 samples of varying lithologies, thereby providing several opportunities for refinement of techniques. We also discuss some difficulties and challenges that were faced and suggest how to alleviate such occurrences for sedimentary chemical analyses during future legs

    Nucleation of Al3Zr and Al3Sc in aluminum alloys: from kinetic Monte Carlo simulations to classical theory

    Get PDF
    Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which for low supersaturations of the solid solution have the L12 structure. The aim of the present study is to model at an atomic scale this kinetics of precipitation and to build a mesoscopic model based on classical nucleation theory so as to extend the field of supersaturations and annealing times that can be simulated. We use some ab-initio calculations and experimental data to fit an Ising model describing thermodynamics of the Al-Zr and Al-Sc systems. Kinetic behavior is described by means of an atom-vacancy exchange mechanism. This allows us to simulate with a kinetic Monte Carlo algorithm kinetics of precipitation of Al3Zr and Al3Sc. These kinetics are then used to test the classical nucleation theory. In this purpose, we deduce from our atomic model an isotropic interface free energy which is consistent with the one deduced from experimental kinetics and a nucleation free energy. We test di erent mean-field approximations (Bragg-Williams approximation as well as Cluster Variation Method) for these parameters. The classical nucleation theory is coherent with the kinetic Monte Carlo simulations only when CVM is used: it manages to reproduce the cluster size distribution in the metastable solid solution and its evolution as well as the steady-state nucleation rate. We also find that the capillary approximation used in the classical nucleation theory works surprisingly well when compared to a direct calculation of the free energy of formation for small L12 clusters.Comment: submitted to Physical Review B (2004

    Political Corporate Social Responsibility: Reviewing Theories and Setting New Agendas

    Get PDF
    There has been rising interest in political corporate social responsibility (political CSR), defined as activities where CSR has an intended or unintended political impact, or where intended or unintended political impacts on CSR exist. Based on a survey and content analysis of 146 peer-reviewed academic articles from 18 journals over the 14-year period 2000–2013, this paper systematically reviews the existing applications of general theories (such as legitimacy theory, the resource-based view and Habermasian political theory) within the political CSR literature.The survey indicates that the political CSR field is dominated by institutional theory and stakeholder theory, but future theory development needs to go beyond these theories in order to address a number of critical gaps. This review specifically points to several avenues for future political CSR research with regard to the individual level of analysis, domain integration and political CSR in multinational enterprises. The paper ends with a call for a new theory-informed and pluralist research agenda on political CSR to integrate different perspectives and re-examine the role of the state

    Milagrito: a TeV air-shower array

    Full text link
    Milagrito, a large, covered water-Cherenkov detector, was the world's first air-shower-particle detector sensitive to cosmic gamma rays below 1 TeV. It served as a prototype for the Milagro detector and operated from February 1997 to May 1998. This paper gives a description of Milagrito, a summary of the operating experience, and early results that demonstrate the capabilities of this technique.Comment: 38 pages including 24 figure
    • 

    corecore